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Abstract

One central challenge in the realization of Software De-
fined Radio (SDR) is to provide a programmable solution
that meets the challenging high-performance, low-power
requirements, while providing an efficient software devel-
opment interface. In this paper, we present an overview
of a fully programmable multi-core SIMD architecture for
SDR. Our solution can support 2Mbps W-CDMA at about
270mW, and 24Mbps 802.11a at about 370mW in 90nm
technology. This high computational efficiency is achieved
by exploiting the vector characteristics of the algorithms,
through a unique multi-core architecture that consists of
tightly coupled scalar and wide SIMD pipelines. In addi-
tion, we present a software design flow that supports effi-
cient DSP programming and implementation through a set
of signal processing extensions to C, referred to as SPEX.

1 Introduction

Software Defined Radio (SDR) promises to revolutionize
the communication industry by delivering low-cost, flexible
software solutions for wireless mobile communication pro-
tocols. Wireless protocols are systems consisting of a col-
lection of distinct DSP algorithms. The difficulties of imple-
menting a complete system in software include challenges
for both DSP hardware and software designers. In this paper,
we present a system solution for SDR that includes a novel
DSP processor architecture that is designed specifically for
SDR, and a programming model that allows efficient DSP
software development. We have developed the complete W-
CDMA and 802.11a protocols’ physical layers, programmed
them onto our system, and shown that they achieve the re-
quired bandwidth and the power efficiency for mobile termi-
nals.

The two major challenges in SDR are the design of effi-
cient hardware systems and software development environ-
ments.

• Hardware requirements for current and next generation
wireless protocols are extremely high. SDR proces-
sors must achieve supercomputer-like computational
throughput, maintain ASIC-like power consumption,
meet the protocols’ latency requirements, and support
real-time systems with dynamically changing control
states [4]. Existing and next generation DSP proces-
sors, such as the TI TMS320C64x [1] and the Freescale
StarCore [2] are not designed specifically for SDR.
They either consume too much power or do not meet
the performance requirements. In addition, because
wireless protocols are complex systems of many DSP
kernels, it is also desirable for the hardware designers
to provide an easy design interface for DSP software
programmers. Some of the emerging SDR processor
solutions meet the performance requirements, but are
very difficult to develop or debug. Morpho Technol-
ogy’s RC Array [3] consists of 2D array of processing
elements, which cannot be expressed efficiently in tra-
ditional C-like programming languages. Similarly, the
PicoArray [5] also consists of an array of processing
elements on which it is difficult to map applications.

• DSP programming support needs to provide an easy
system development flow for the software developers.
At the system-level, the software needs to provide a de-
velopment flow similar to existing SoC development
flows, where the inter-algorithm communication and
protocol state control are developed and debugged. At
the algorithm-level, programming support must gen-
erate efficient machine code for individual DSP ker-
nels written in a high-level programming language. It
also needs to be flexible enough to allow DSP pro-
grammers to develop hand-written assembly code for
the extra optimizations. C is perhaps the most popu-
lar programming language in the DSP community even
though it lacks some necessary features for properly de-
scribing the application domain. For example, it does
not support first-class SIMD or concurrent function ob-
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(a) Multi-core system architecture for SDR
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(b) Effect of SIMD width on computational efficiency for W-CDMA
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Figure 1: System Overview

jects. Matlab is another language which is very popular
among DSP programmers. It provides SIMD-centric
first class data structures and pipeline-level concur-
rency that can be expressed using Simulink. However,
Matlab does not support explicit object definitions, in-
cluding SIMD variable types, concurrent threads, and
communication channels. The lack of this information
makes it very hard for compilers to produce efficient
assembly code.

In order to verify the efficiency of our processor architec-
ture, we first implemented both the complete physical layer
of a transmitter and receiver for W-CDMA and 802.11a
in C. We then compiled both of these two protocols onto
our processor architecture, and shown that our architecture
was able to meet the performance and power requirements:
2Mbps W-CDMA at 270mW, 24Mbps 802.11a at 370mW.
Our DSP system is a modular, multi-core DSP architecture
where each DSP algorithm can be designed and verified
individually and separately from the system-level develop-
ment. Unlike other proposed multi-core SDR architectures,
(e.g. [6] and [7]), each hardware component in our system
has a standardized interface. DSP algorithms are mapped
onto individual processors, not across multiple processors.
Thus, the DSP kernel implementations can be developed and
verified individually. System-level development can view
these kernel codes as software ASICs, and control different
kernels through a predefined standardized SoC interface.

We present our software development flow, which in-
cludes both the system-level and algorithm-level develop-
ment flows. The central element of our software design is
SPEX (Signal Processing EXtension), a set of language ex-
tensions for C, which narrow the semantic gap between DSP

algorithm descriptions and their implementations. Like Mat-
lab, SPEX provides built-in support for vectors (through the
use of SIMD data variables), as well as SIMD data oper-
ations, such as vector permutation and vector predication.
However, SIMD data variables carry additional attributes,
such as data bitwidth for efficient implementation. SPEX
also provides thread and communication objects, called ker-
nels and channels. Kernel objects support dynamic thread
spawning and deletion to account for dynamically chang-
ing workloads. SPEX channel objects are generalized FIFO
(first-in, first out) structures that support random read ac-
cess and SIMD objects as queue entries. In addition, global
variables are disallowed, as all communication must be per-
formed through channels. We believe these extensions pro-
vide an intuitive programming model for expressing high-
throughput DSP applications, as well as an efficient interface
for compiling to multi-core DSP processors.

2 Architecture Overview

2.1 Multi-core System

Our system is a heterogeneous multiprocessor architecture,
shown in Figure 1(a). The system consists of multiple high
throughput SIMD-based processing elements (PEs), a low
throughput scalar controller, and global scratchpad memo-
ries (MEM). These components are all connected through a
shared bus. PEs consist of tightly-coupled scalar and SIMD
pipelines. The SIMD pipelines are generally used for com-
putationally heavy DSP algorithms, such as filter, FFT, and
channel decoders. The scalar pipelines are used for the se-
quential portions of algorithms and address generation for



the SIMD pipelines. The controller is used for overall sys-
tem management, such as power control. MEM is mainly
used to buffer intermediate data transfers between DSP al-
gorithms.

PEs are the main computation units in this system. They
take the most area and consume the most power. The num-
ber of PEs and the architectural organization of these PEs are
one of the main design considerations. Figure 1(b) shows
an approximate efficiency trade-off for running W-CDMA
protocols with multiple PE configurations, from left to right
with increasingly bigger, but fewer processing elements. All
of the configurations have constant computation throughput
and meet the real-time W-CDMA requirements. As shown
in the graph, configurations with a small number of wide
SIMD units – 4x32 to 1x128 appear to be the most efficient.
However, a wider SIMD architecture has greater of program-
ming challenges. In most programs, it is very hard to find
128 independent data elements to compute in parallel. Sig-
nal processing algorithms have much inherent parallelism,
ie, the taps of a filter, that can be calculated in parallel. But
there are also many signal processing algorithms that do not
have wide parallelism. In our case study with W-CDMA and
802.11a, we choose a design point near the inflection point
of the graph: 4 PEs, each with 32-wide SIMD units.

In typical commercial wireless system solutions, low
computation algorithms are handled by DSPs, high compu-
tation algorithms are designed with ASICs, and the whole
system is an integrated SoC with a simple controller, such
as an ARM processor. Given the complexity of these real-
time systems, we want to separate the design of individual
DSP algorithms from the design of the protocol system. In
our SDR solution, each DSP algorithm is designed indepen-
dently as a “software ASIC”, with internal states and vari-
ables, and a communication interface to the outside world.
System-level development, consists of linking these DSP al-
gorithms together, mapping algorithms onto PEs, and defin-
ing real-time deadline requirements. Low computation algo-
rithms, like filters and FFTs, may be combined together onto
one PE. High computation algorithms, such as searchers,
Viterbi decoders and Turbo decoders, generally require their
own PE.

In order to support such a design methodology efficiently,
each hardware component is designed with a standardized
system interface. This interface includes both hardware re-
quirements and software programming specifications. Any
hardware units that are connected to the system has to sup-
port this interface. This is shown in Figure 1(a) as the “SoC
Interface”. The software specification is defined as a set of
assembly instructions, including communication, synchro-
nization, and memory access instructions. All processing
elements must support these instructions with pre-defined
timing requirements. The hardware implementation of the
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Figure 2: PE Architectural Diagram

interface consists of a DMA (Direct Memory Access) unit,
a real-time clock, and hardware synchronization registers.

2.2 Processing Element

Figure 2 shows the architectural detail of a PE. The PE con-
sists of two coupled parts: a scalar pipeline and a SIMD
pipeline. The scalar pipeline contains the address genera-
tion unit (AGU) and is a single issue, in-order, 16-bit RISC
architecture. Its main purpose is to generate memory ad-
dresses for the SIMD pipeline, handle the kernel’s control
flow, and process scalar DSP algorithms (such as the inter-
leaver). In most DSP algorithms, the core kernels are made
up of shallow nested loops (one or two levels). Because of
this, we choose not to implement a branch predictor, but add
loop counter-based branch instructions instead. In addition,
DSP kernels process data in stream buffers, thus most of the
memory access are from data queues, which are directly sup-
ported by the AGU.

The SIMD pipeline consists of 32 8-bit clusters. Through
the implementation of W-CDMA and 802.11a protocols, we
found that most DSP algorithms have high degree of SIMD
parallelism. The core operations of filter, FFT, Viterbi/Turbo
decoder, and rake receiver all are based on wide vector vari-
ables of narrow data-width. Therefore, with the support of
conditional operations on the clusters, we can efficiently uti-
lize 32 clusters of 8-bit ALU computations. The PE’s local
scratchpad memory is divided into two clusters: one for the
SIMD unit and the other for the scalar unit. Both memories
have two read/write ports and there is a DMA engine that
serves both memories.

Many DSPs have support for 8- and 16-bit operations.
However, their clock cycle time is optimized for 32-bit arith-
metic operations. This leads to lower power efficiency for
8- and 16-bit operations. In wireless protocols, the major-
ity of the algorithms operate on 1- to 8-bit data, some al-
gorithms operate on 16-bit data, and few operate on 32-bit



data. Therefore, our system is optimized for 8-bit opera-
tions in the SIMD unit and 16-bit operations in the scalar
unit. 16-bit support is provided in the SIMD unit by treating
two register entries as one and using two cycles for 16-bit
ALU operations (along with special hardware support for
the carry in/out bits). The AGU registers are 12-bit, but only
support 8-bit addition and subtraction. This is because AGU
is mainly used for software management of data buffers, in
which 8 bits are sufficient. The higher 4 bits are used to
address different PEs, as well as different memory buffers
within PEs.

3 System Evaluation

3.1 Wireless Protocol Mapping

Figure 3 shows the mapping of W-CDMA and 802.11a onto
our 4 PE system. As W-CDMA is a full duplex protocol,
the receiver and transmitter are running at the same time.
Because of this, the transmitter and receiver are mapped onto
their own PEs for W-CDMA. This contrasts with 802.11,
where the transmission and reception phases are disjoint in
time and thus the kernels for these modes can share PEs.
This provides for a more balanced task allocation.

W-CDMA Mapping. In W-CDMA, the receiver requires
much more computation than the transmitter. As shown in
Figure 3(a), the receiver is assigned to 3 PEs, and the trans-
mitter is assigned to 1 PE. Global memory contains three
buffers. The FIFO buffer is used to buffer results between
the receiver FIR filter and the searcher. The other 2 buffers
are used to store intermediate results between the Rake re-
ceiver and the interleaver, and the interleaver and the Turbo
decoder.

802.11a Mapping. In 802.11a, both receivers and trans-
mitters are mapped onto the same set of hardware. Similar
to W-CDMA case, global memory is mainly used to buffer
the intermediate data traffic of the interleaver. Unlike most
other algorithms, the interleaver is a highly sequential algo-
rithm. It requires a whole frame to be buffered before it can
output its results.

3.2 Area and Power Results

Table 1 shows the power consumption and area break down
for a 2Mbps throughput W-CDMA and a 24Mbps through-
put 802.11a. The overall power results were 1,381mW and
1,909mW for W-CDMA and 802.11a, respectively. This as-
sumed 180nm technology at 1.8V and 400MHz. Scaling
these results to 90nm technology at 1V and 400MHz results
in power values of 268mW and 370mW. Three components
consume the majority of the power: 1) the register file which
consumes 34% for W-CDMA and 30% for 802.11a; 2) the
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Figure 3: Mapping of W-CDMA and 802.11a onto the pro-
cessing elements



Area Power: W-CDMA 2Mbps Power: 802.11a 24Mbps
Components Units Total Area Area Total Power Power Total Power Power

mm
2 % mW % mW %

PE

Memory (12KB) 4 3.6 21% 515.6 37.3% 618.6 32.4%
Register File 4 0.6 2% 562.4 40.7% 674.8 35.4%

ALU, Shifter & Mult. 4 4.7 29% 103.2 7.5% 297.6 15.6%
Other Logic 4 1.6 11% 183.2 13.3% 202.3 10.6%

System

Controller 1 0.6 3% 4.8 0.4% 9.6 0.5%
Main Mem (64KB) 1 2.9 18% 10.0 0.7% 80.0 4.2%
Inter-processor Bus 1 0.2 1% 2.5 0.2% 25.0 1.3%

DMA 1 0.1 1% 0.1 0.0% 1.0 0.1%
Routing 1 1.9 12% 0.0 0.0% 0.0 0.0%

Total
180nm (1.8V @400MHZ) 16.1 100% 1381.7 100% 1909.0 100%

90nm (1V @400MHZ) 3.8 268.1 370.4

Table 1: System area and power summary for W-CDMA and 802.11a

local memory which consumes 16% for W-CDMA and 14%
for 802.11a; and 3) the scalar pipleine which consists of the
scalar memory, instruction queue and miscellaneous logic
which consumes 10%, 9%, and 10%, respectively, for both
W-CDMA and 802.11a.

This table also shows the area break-down. Unlike tra-
ditional processor architectures, the biggest component is
the arithmetic units, not memory units. This indicates that
this processor architecture has a very high computation ef-
ficiency. By having small local memories, we are able to
reduce the power consumption as well as decrease the die
area. The global memory is shared between processors. Its
size is required to store enough data for buffering frames
during interleaving processing. Unless a more efficient in-
terleaver algorithm is found, this global memory space is
unavoidable.

4 Software Development Flow

4.1 Overall Design Flow

Figure 4 shows our software design flow. Algorithms are
first debugged and verified functionally through either Mat-
lab/Simulink or floating-point C implementations. In a man-
ner similar to traditional SoC design, the development flow
then separates into system-level and kernel-level design.
They are both implemented in fixed-point format in SPEX
(Signal Processing EXtensions for C). SPEX is a Matlab-
like programming extension which offers first-class vector
and matrix variables and operations. Unlike Matlab, SPEX
also allows explicit variables declarations, including vari-
able bitwidth and saturation mode operations. SPEX is ex-
plained in further detail in next section. From this point on,

the compiler can automatically generate assembly code, but
programmers can also choose to handcode the DSP kernel
assembly files for further optimizations.

Machine code is generated in three steps from SPEX de-
scriptions. First machine and timing independent assembly
code is generated. At this level, kernels are not assigned
to processors, and system protocol descriptions are not in-
corporated with kernel assembly code. Second machine-
dependent assembly code is generated, where kernels are
mapped into processors, and system protocol descriptions
are translated into real DMA and control instructions. Fi-
nally, real machine code is generated by merging the system-
level and kernel-level assembly code. Programmers are
given the flexibility to develop and debug code during any
stage of the compilation. The efficiency of SPEX means our
compiler does not need complex code-transformation tech-
niques, making the assembly code easily accessible to DSP
developers.

4.2 High-Level Programming Model

We proposed a multi-core, wide SIMD processor architec-
ture. Given the difficulty in programming traditional DSPs,
this new processor architecture provides even greater chal-
lenges for the programmers and compilers. In this section,
we briefly describe our C language extension called SPEX
(Signal Processing EXtension), which is aimed at narrowing
the semantic gap between the description of high-end sig-
nal processing algorithms and their implementation. SPEX
contains two major components: SIMD variables and con-
current kernel support. The former is suitable for express-
ing data parallelism within algorithms by providing SIMD
data structures and explicit SIMD operations. The latter
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Figure 4: Software Development Flow

is suitable for expressing thread-level parallelism within al-
gorithms through the use of concurrent kernel objects that
communicate through channel objects. The intent is to sep-
arate coarse grain communication from fine grain commu-
nication. Coarse grain communication is best represented
using the kernel extensions, and fine grain communication
is best represented using the SIMD variable extension. We
have not explicitly supported instruction-level parallelism in
SPEX because modern parallelizing compilers are good at
discovering it automatically.

Variable Extensions. SPEX contains a first class SIMD
data type and an attribute mechanism for specifying imple-
mentation details. The SIMD extensions consist of two ma-
jor data structures: one for describing scalars, another for
describing SIMD data. The SIMD data structure is con-
structed internally as an array of scalar variables, which sup-
ports both vector and matrix objects. Both data structures
can be further elaborated through attributes, which allow the
programmer to specify implementation details at the point
of variable declaration. These variable attributes are then
treated internally as compiler directives, which are inter-
preted by the compiler based on the specifics of the target
DSP architecture.

Kernel Extensions. SPEX kernel extensions consist of
two types of data objects: kernel objects and channel ob-
jects. Conceptually, kernel objects represent functions that
can be executed concurrently, and channel objects are com-
munication interfaces between kernels. With traditional C,

DSP programmers have to manually implement these com-
munication memory structures. This results in difficult-to-
read code for humans and compilers alike. In SPEX, kernels
are written independently and communicate through virtual
channel objects. This separation removes memory manage-
ment tasks from the programmers.

5 Conclusion

In this paper, we have presented a hardware and software so-
lution for SDR. The hardware system is composed of a set
of dual-issue asymmetric processing elements that each con-
tain a scalar and wide SIMD pipeline. A 4 processor version
of this system is shown to meet the performance require-
ments of W-CDMA and 802.11a physical layer processing,
and have the power characteristics needed for mobile termi-
nals. To support software development on this system, we
provide a modular programming environment that includes
separate system and kernel level specification and debug-
ging. Programming is carried out using SPEX, a set of ex-
tensions to C for specifying vector/matrix objects and opera-
tors, along with virtualized inter-kernel communication. Our
future work includes the implementation of a larger variety
of protocols and a deeper exploration of efficiency trade-offs
of programmable signal processing architectures.
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